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Efficient Numerical Method for Computation
of Thermohydrodynamics of Laminar

Lubricating Films

Prof. Harold G. Elrod

14 Cromwell Court

Old Saybrook, CT 06475

Summary

The purpose of this paper is to describe an accurate, yet

economical, method for computing temperature effects in laminar

lubricating films in two dimensions. The procedure presented here is

a sequel to one presented in Leedsin 1986 that was carried out for

the one-dimensional case.

Because of the marked dependence of lubricant viscosity on

temperature, the effect of viscosity variation both across and

along a lubricating film can dwarf other deviations from "ideal"

constant-property lubrication.

In practice, a thermohydrodynamics program will involve
simultaneous solution of the film lubrication problem, together

with heat conduction in a solid, complex structure. The extent of

computation required makes economy in numerical processing of

utmost importance. In pursuit of such economy, we here use techni-

ques similar to those for Gaussian quadrature. We show that, for

many purposes, the use of just two properly positioned temperatures

(Lobatto points) characterizes well the transverse temperature
distribution.



I. INTRODUCTION:

The purpose of this paper is to describe an accurate, yet

economical, method for computing temperature effects in laminar

lubricating films. The procedure presented here is a sequel to one

presented in Leeds in 1986. I

Because of the marked dependence of lubricant viscosity on

temperature, the effect of viscosity variation both across and

along a lubricating film can dwarf other deviations from "ideal"

constant-property lubrication. In two recent papers 2,3 Khonsari has

summarized the growing literature concerned with the present

subject. Consequently, we shall not undertake a survey here, but

refer only to those articles used for support or comparisons.

In practice, a thermohydrodynamics program will involve

simultaneous solution of the film lubrication problem, together

with heat conduction in a solid, complex structure. The extent of

computation required makes economy in numerical processing of

utmost importance. In pursuit of such economy, we here use techni-

ques similar to those for Gaussian quadrature. We show that, for

many purposes, the use of just two properly positioned temperatures

characterizes well the transverse temperature distribution.

2. NOMENCLATURE

Single-underline _ denotes a Legendre coefficient.

Double-underline denotes a vector.

Certain matrices a_e defined in place in section 7.

A
B

Cp
h

k

L

m_
P
Pk
t

T

U

V

v

V

W

Wk

X

Y
Z

flow vector, d_fined by eq. 4.03

flow vector, defined by eq. 4.04

specific heat, J/kg-C

film thickness, m

thermal conductivity, J/Csm

subscript for lower surface

mass flux vector, kg/sm z

pressure, N/m z

Legendre polynomial of order k

time, sec

temperature, deg C

velocity of fluid in x-direction, m/s

subscript for 9pper surface

velocity of fluid in y-direction, m/s

total velocity vector, e_u + _yv + ezw

velocity vector, e_ u + _ v, mYs

velocity of fluid--in z-_irection, m/s

weight for ordinate at _k, Lobatto quadrature

longitudinal position along film, m

lateral position along film, m

position normal to film, measured from midsurface



¢
P

dissipation, J/sm 3 , defined by eq. 4.03

viscosity, Ns/m 2

fluidity = i/_, m2/Ns

2z/h, fractional transverse position

density, kg/m _

3. LOBATTO INTERPOLATION AND QUADRATURE:

In general terms, the problem to be treated is one of three-

dimensional heat convection. A numerical solution is effected by

sampling the velocities, pressure and temperature over a chosen

grid of points, and interlinking their values by algorithms that

incorporate appropriate physical laws. Generally speaking, the

fewer sample points required, the less the computational effort.

Consequently, we ask: "What are the best cross-film sampling

positions?" The answer is provided by the theory of orthogonal

polynomials. 4,_

Figure 1 shows a section of lubricating film, with the normal

displacement, f, scaled to be -i on the lower wall, and +I on the

upper. At certain locations, _k, we intend to obtain sample values
of the flow variables and to deduce therefrom certain intermediate

cross-£ilm values, derivatives and integrals. For illustrative

purposes, consider the temperatures Tk = T(_k) • These are assumed

to be known at _=i and _=-I, and at N intermediate points.

If the intermediate sample points are equispaced, and a

polynomial for T(_) is passed through them. the excursions of such

a polynomial between points can become unacceptably large. See, for

example, Fig. 2, where a tenth-degree polynomial is used to

approximate the stepfunction T(_<0) = i; T(_>0) = 0 by collocation

at eleven equispaced points. On the other hand, if a tenth-degree

polynomial is collocated at the endpoints (_ = -i; _ = i) and at

the zeroes (_k) of the Jacobi polynomial <_) Psi'J (¢) ("Lobatto

points"), conformity to the step function is much better. Indeed,

if the order of the polynomial is increased, equispace interpola-

tion may fail to converge at all, whereas the latter form of

interpolation becomes progressively better.

Not only do the Lobatto points serve well for interpolation

by high-order polynomials, but they also serve for accurate

numerical integration _ • It can be shown that N such internally-

selected points permit exact numerical integration of a polynomial

of order 2N+I over the range -i<_<I. Thus:

_a_ For N interior points, the Lobatto locations (_L) are at the

zeroes of dPN_, (_)/d_ = N(N+I)PN-11'I (f), where P_(_) is the Legendre

polynomial of order N.

3
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[2.01] IT(f )dr = [wkTk

-I

The Lobatto locations, _k, and weight factors, wk, are to be found

in Abramowitz and Stegu_. For N=2, we have:

Location

-I 1/6

-I/15 5/6

1/15 5/6

1 1/6

Note that, in contrast to Gaussian quadrature, Lobatto's technique

incorporates endpoint values which, in our case, are known, and

might as well be used.

The approach taken in this paper is to form partial differen-

tial equations in x,y for the Lobatto-point temperatures, with the

transverse temperature distribution given by a collocated polynomi-

al. The "fluidity", _ = I/_ is also collocated to its Lobatto-point

values, (k = _ (Tk).

Let us turn now to the analytical development which incor-

porates these ideas.

3. BASIC THERMOHYDRODYNAMIC EQUATIONS:

The equations to be used are for laminar lubrication with a

fluid possessing constant density and constant thermal properties.

The momentum equation is:

[4.01] (a/az) (ua_/az) = ?p

the pressure being independent of "z".

And the energy equation is:

[4.02] pCp (DT/Dt) = k(62T/6z z ) + _ with:

[4.03] _ = _(Sv/Sz) 2

Here the viscosity, _J, may depend markedly on the local temperature

T. In addition, the conservation of mass (or volume) must be

satisfied; i. e.,

[4. o4] U-v = o

Several investigators 7'" have justified the use of these

equations by showing that the effects of variations in density,

specific heat, etc., of the lubricant are quite secondary to those

resulting from changes in its viscosity, which usually varies

substantially with temperature.



The boundary conditions to be satisfied by eqs. [4.01 - 4.03]
are as follows. The liquid velocities must conform to the upper
and lower surface motions, and the liquid temperature to the
surface temperatures. At the film peripheries, incoming liquid
temperatures correspond to ambient conditions, whereas outgoing

temperatures derive from the interior where they originate.

5. VELOCITIES. REYNOLDS EQUATION:

To compute the velocities, it is, for several reasons, conven-

ient to use the fluidity expressed as a series in Legendre

polynomials. Thus:

[5.01] ( = Z_kPk (C)

As previously stated, the coefficients _k are here determined by

collocation of the fluidity at the Lobatto points, where its values

are determined by the Tk . A double integration of eq. [5.01] then

yields for V = exu + eyv.

-i -i
[5.02]

where:

[5.03]

and:

1 1

A = [V,, - V=z - B IC(dC] / [I_dC]
-I -I

[5.04] _ = (h/2) z ?p

To obtain the lineal mass flux, eq. [5.02] must be integrated

again. The result is:

[5.05] _/p = (_u + V_) (h/2) - (h/3)[I_-(2/3)_(_ + 2_/5)

This result is independent of the number of terms in the series

[5.01]. When it is inserted into the mass continuity equation:

[5.06] _h/6t + ?'(_/p) = 0

the following generalized Reynolds equation results:

[5.07] _'[_h3Qp = 6(V=_J + V=L)'Qh + 12(6h/c_t) - 27"($_ /[0)h(V__u - V, )

where:

[5.08] _p = __0 + 0.4_2 - (_.s)2/(3__0)

In form, eq. [5.07] differs from the standard Reynolds equation 9

only through its last term.



Now we wish to express our differential equations using the
fractional gap position as transverse coordinate across the film.

Thus:

[5.09] _ = 2z/h

where "z" is measured from the midsurface. Taking "x" as a typical

lateral coordinate and "u" as a typical variable, we note that:

[5.10] (0u/6x)y,z = (_u/6y)_,f - _(_log(h)/6x)_ (_u/6_)x,y

The transverse velocity, w, can be found from mass continuity

via:

[5.11] %w/6z = -(6u/_x + 6v/%y) = -(U'E)z

But:

[5.12] (?'_)z = (U'_)_ - ¢_log(h)'(8_/6C)

Substituting [5.12] into [5.11] and integrating, we get:

z

[5.13] w = WL - ;{_'_- _log(h)'(6_/_)}dz
-h/2

Integration by parts gives:

[5.14] w = W, + VL "_(h/2) + fV_'Q(h/2) - Q_'[(h/2)IVdC]
V

-i

6. TEMPERATURE EQUATION:

To obtain a convenient differential equation for the tempera-

ture, we rewrite eq. [4.02] as:

[6.01]

6T/St + u(ST/6x)y._ + v(6T/6y)x,_ + (2/h) (6T/6C)x,_[w -C_'?(h/2) } =

(4_/h 2) (62T/6fz)x,y + _/(pCp)

To treat the cross-velocity term, we note that kinematics gives:

[6.02] WL + _-?(h/2) = -6(h/2)/6t

Substituting [5.14] and [6.02] into [6.01], we get:

[6.03] 6T/6t + _'QT -

¢

(llh)(OTl6f) [(I+_) (_h/6t) + Q'hl_d_] =
-I

(4K/h2) (6ZT/6¢ 2 ) + _/(pCp)



All partial derivatives in the foregoing equation are in x,y,_,t

space. There is one such partial differential equation {6.03] in

x,y,t for each Tk .

7. NUMERICAL PROCEDURES :

It is convenient to treat the Tk (xt ,yj ), _ (xl ,yj) as vector

matrices, and to use matrix notation. We have:

[7.01] T(C) = }ZT, P_, (C)

[7.02] _ (_) = Zi, P,, (_)

Therefore :

[7.02] Tk = 7T_, P, (Ck) or: Tk = ZCk,T_k or: T = CT and: T = C-_T

Also, then:

[7.03] ( = C[ and: _ = C-'_

Successive differentiation of [7.01] enables us to write:

[7.03] 3T/3_ = DT and: 3ZT/3C 2 = ET

Successive integration of [7.02] permits us to write

[7.04] V = V=l.+ AF( + BG( and:

[7.05] IVd_ = V_,(I+C) + AR( + BS_
-I

To preserve numerical stability, backward differences are used

for the convective terms. Thus, at the point (i,j) we write:

[7.06] u(_T/_x) = abs(ui,j) [Ti,j - Tt-gx,j] ; gx = sgn(ui,j)

with a similar expression for v(ST/6y).

Now form the diagonal matrix, Ed, from the diagonal terms of

E, and let E0 = E - Ed . With these definitions, the matrix finite-

difference equation corresponding to [6.03] is:

[7.07] [1/At + abs(u)/Ax + abs(v)/Ay - (4K/h")Ed]T""_J,j =

Ti,j/ht + {abs(u)T,-,x,j}/Ax + [abs(v)Ti,j-g_J/Ay + (4K/h2)E0 Tj,j +

(l/h) (?'hlVd{)DT,.j + _/pCp



Here T"ew denotes T(t+At), u, v, _ and T belong to the same trans-

verse row (fk), and the integral of velocity is from the lower wall

to _k.

The explicit form of the difference equation [7.07] is stable

for a large At, such as was used to generate the steady-state

results presented in this report.

8. COMPUTATIONAL RESULTS:

Validation of the computer program was attempted in various

ways. Comparisons were made with the one-dimensional calculations

of Hunter and Zienkiewicz *°, Dowson and Hudson 7 and of Hahn and

Kettleborough 8, who all used the physical properties tabulated

below.

= 0.13885 exp{-_(T-T,.ble.t) }, Ns/m'_ ; _ = 0.045

pCp = 1.7577 J/m:JC

= 7.306 E-08 m2/s

Tamb_ent = 0 (used as reference, only)

These same properties are used for all examples of this report,

except that _ = 0, instead of 0.045, for the constant-property

calculations.

Dowson and Hudson chose the following bearing characteristics.

L = 0.18288 m; W infinite

Uu = 31.96 m/s; UL = 0

hl = 1.8288 E-04 m; hm = 0.9144 E-04 m

Figures 3 and 4 compare our results with theirs _b) Agreement is

certainly satisfactory, though not perfect• Dowson and Hudson used

Ax = L/20 and a constant A y = h2/20, whereas we-employed Ax = L/30

and N = 8 In these comparisons as in others made, the reasons for

the observed small discrepancies are difficult to asslgn. There-

fore, it was decided to write the present program for arbitrary N,

and to use N = 8 as a standard against which to test more approxi-

mate, but faster versions employing N = 2 or 3. To assist others

_b> All dotted curves, except those in Fig. 2, were collocated at

the Lobatto points, and interpolated with an auxiliary plotting

program; i.e. thedotted curves are not everywhere in complete

agreement with the corresponding Legendre polynomial expansions.

8



who may wish to make comparisons with their own programs, we list
some results for the above problem in the Appendix.

In Fig. 3, the great reduction in load capacity due to
lubricant warmup is manifest. Of course, in engineering design

practice some allowance for this effect is made by assigning some

lowered constant viscosity corresponding to an estimated tempera-

ture rise.

Figure 4 shows the convergence with N of results obtained

using the present program. There is no perceptible difference
between the results for N = 5 and those for N = 8. Somewhat

fortuitously, the results for N = 2 also almost coincide with the

"true" curve. Figure 5 shows the convergence of the temperature

distributions. The Lobatto-point results for N = 2 and N = 3 are

compared with the curves for N = 8 at the bearing exit, and at the

halfway point.

Reverse convection has been a source of difficulty for some

investigators. Accordingly, we show in Figs. 6 and 7 some calcula-

tions for a high film-thickness ratio of 4. Note the rapid

variation of temperature in the bearing inlet incoming

temperatures are taken at an entrance value of 0, whereas tempera-

tures in the backflow region originate from a region where viscous

heating has occurred. As shown in Fig. i, Lobatto interpolation is

particularly suited to cope with such variation. The two-tempera-

ture version (N = 2) of our program performs surprisingly well.

All of the foregoing calculations are for a one-dimensional

bearing, run with the program, however, as a two-dimensional wide

bearing. The same cases were also solved earlier by a one-dimen-

sional procedure i embodying Lobatto-point methods. But when

extended to two-dimensional problems, that earlier procedure proved

to be persistently unstable. To deal successfully with the added

dimension, the present method was devised. Figures 8, 9 and I0 show

some sample "true" two-dimensional results obtained with a square

slider bearing.

We intend to continue this investigation by engaging in some

parametric studies and by coupling the new technique to:

inlet-groove temperature distribution

cavitation

heat conduction in the bearing body
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APPENDIX:

PRESSUREDISTRIBUTION FOR DOWSON-HUDSONPROBLEM

x/L pressure, N/m 2

0 0

.i 3545479

.2 6434485

.3 8755968

.4 1.051984E+07

.5 1.167347E+07

.6 1.209784E+07

.7 1.158809E+07

.8 9815331

.9 6259130

1 0

TEMPERATURES OBTAINED FOR DOWSON-HUDSON PROBLEM

x/L

0 0.2 0.4 0.6 0.8 1.0

-1

-.9195339

-.7387739

-.4779249

-.165279

.165279

.4779249

.7387739

.9195339

1

0 0 0 0 0

0 1.883201 3.275796 4.859227 6.956678

0 5.325756 9.360686 13.81515 19.56049

0 7.951722 14.41125 21.01087 28.58318

0 8.313656 15.44364 21.92048 27.68786

0 7.881326 14.21572 19.14167 22.08036

0 7.5885 12.91233 15.74303 16.07165

0 6.967654 10.07563 10.47426 9.308805

0 3.865244 4.300633 3.853627 3.094525

0 0 0 0 0

0

9.435757

26.13743

36.01018

31.61222

22.90305

15.18215

8.233334

2.774959

0
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